Lecture 9 MOs and Benzene

February 19, 2019

Some History

Michael Faraday 1791-1867

British physicist and chemist, best known for his discoveries of electromagnetic induction and of the laws of electrolysis. He also discovered benzene!

https://www.britannica.com/biography/Michael-Faraday

The Old Lamp Lighter

Benzene – per Kekulé

• August Kekulé proposed a structure for benzene in 1872

• This structure, however, did not really account for the unusual chemical reactivity of benzene

Kekule explains why there are only 3 isomers of dibromobenzene

Kekule's proposal is an equilibrium between two structures

•Pauling's <u>Resonance Theory</u> describes resonance structures generated by electron movement (only!) that are not real, they are constructs the weighted sum of which describes the real molecule, which is presented as the resonance hybrid

Benzene - Resonance

- We can represent benzene as the hybrid of two equivalent Kekulé structures
 - each makes an equal contribution to the hybrid, and thus the C-C bonds are neither double nor single, but something in between

All C—C bond distances = 140 pm (1.4 Å)

140 pm is the average between the C - C single bond length and the C=C double bond length in 1,3-butadiene.

Unusual Stability of Benzene

Benzene is the best and most familiar example of a substance that possesses "special stability" or "aromaticity"

Aromatic molecules have stability that is substantially greater for a molecule than would be expected on the basis of any of the Lewis structures written for it

Benzene - Resonance

- Resonance energy: the difference in energy between a resonance hybrid and the most stable of its hypothetical contributing structures in which electrons are localized on particular atoms and in particular bonds
- One way to estimate the resonance energy of benzene is to compare the heats of hydrogenation of benzene and cyclohexene.
- This theory provides an explanation for the reactivity of benzene

∆H° of Hydrogenation

Name	Structural Formula	∆H° (kcal/mol)	
			S
1-butene	$CH_3 CH_2 CH=CH_2$	-30.3	I A
cis-2-butene	CH ₃ CH=CHCH ₃	-28.6	B
trans-2-butene	CH ₃ CH=CHCH ₃	-27.6	Ι
2-methyl-2-butene	$(CH_3)_2 C = CHCH_3$	-26.9	L
2,3-dimethyl-2-butene	$(CH_3)_2 C = C(CH_3)_2$	-26.6	T V

3 x cyclohexene

120 kJ/mol

"expected" heat of hydrogenation of benzene is 3 x heat of hydrogenation of cyclohexene

The answer comes from MO Theory

But income for a configuration of the second second

3. How energie

low many

ative

S

For Cyclic Structures Frost Circles...a Great Trick

- Inscribe a polygon of the same number of sides as the ring to be examined such that <u>one of the</u> vertices is at the bottom of the ring
- The relative energies of the MOs in the ring are given by where the vertices touch the circle
- The MOs
 - below the horizontal line through the center of the ring are bonding MOs
 - on the horizontal line are nonbonding MOs
 - above the horizontal line are antibonding MOs

Frost circles for cyclic, fully conjugated 4-,5- and 6-membered rings

π-MOs of Cyclobutadiene (square planar)

4 π electrons; bonding orbital is filled; other 2 π electrons singly occupy two nonbonding orbitals

Structure of Cyclobutadiene

structure of a stabilized derivative is characterized by alternating short bonds and long bonds

π -MOs of Benzene

π-MOs of Cyclooctatetraene (square planar)

nonbonding orbitals are each half-filled Chemistry 328N

Structure of Cyclooctatetraene

cyclooctatetraene is not planar

has alternating long (146 pm) and short (133 pm) bonds

Heats of Hydrogenation

to give cyclohexane (kJ/mol)

heat of hydrogenation of benzene is 152 kJ/mol less than 3 times heat of hydrogenation of cyclohexene

Heats of Hydrogenation

to give cyclooctane (kJ/mol)

heat of hydrogenation of cyclooctatetraene is more than 4 times the heat of hydrogenation of cyclooctene....no special stability here!

Requirements for Aromaticity

Cyclic conjugation is necessary, but not sufficient

There is still something wrong!!!

There has to be some factor in addition to cyclic conjugation that determines whether a molecule is aromatic or not

Hückel's Rule

The additional factor that influences aromaticity is the <u>number</u> of π electrons

Hückel's Ruleb

Among planar, monocyclic, completely conjugated polyenes, only those with $4n + 2\pi$ electrons possess special stability (are aromatic) Magic Numbers 4n+25 5 2 $\left(\right)$ benzene! 6 1 10 2 3 14 18 4 Chemistry 328N

Hückel's Rule for Aromaticity

- **To be Aromatic ...a compound must :**
- 1. be Cyclic
- 2. have one P orbital on each atom in the ring
- 3. be planar or nearly so to give orbital overlap
- have a closed loop of 4n+2 pi electrons in the cyclic arrangement of p orbitals

Hückel's Rule

Actually and inadvertently defines a condition for cyclic molecules in which the bonding molecular orbitals are filled and there are no electrons in non-bonding or antibonding orbitals roughly analogous to the "rare gas" condition for atomic orbitals...

π -MOs of Benzene

6 π electrons fill all of the bonding orbitals all π antibonding orbitals are empty

π -MOs of Cyclooctatetraene

Only Completely Conjugated Polyenes can be Aromatic

6 π electrons; completely conjugated

aromatic

6 π electrons;
 not completely
 conjugated

π -Electron Requirement for Aromaticity

Cyclopentadiene

Let's fill these for each case, radical, anion and cation

Cyclopentadienide Anion

6 π electrons delocalized over 5 carbons negative charge dispersed over 5 carbons stabilized anion

Acidity of Cyclopentadiene

H H $pK_a = 16$ $K_a = 10^{-16}$

Н

Cyclopentadiene is unusually acidic for a hydrocarbon. Increased acidity is due to stability of cyclopentadienide anion.

Chemistry 328N

Н

Cyclopentadienide Anion

Let's Move Electrons

Let's fill these for each case, radical, anion and cation

Compare Acidities of Cyclopentadiene and Cycloheptatriene

 $pK_a = 16$ $K_a = 10^{-16}$

Cyclopropenyl Cation

n = 0 $4n + 2 = 2 \pi \text{ electrons } !!$

n = 0 (4n+2 = 2) fills a bonding MO

Discovery of Cyclopropylium Cation

Ron Breslow 1931 -

While still in his twenties, Breslow made two groundbreaking contributions to mechanistic organic chemistry. His synthesis of a cyclopropenyl cation generalized the concept of aromaticity to cyclic systems with only 2 π -electrons. This work was bolstered by showing that cyclopropenyl anions and cyclopentadienyl cations, each with 4n π electrons in a cyclic array, are antiaromatic (a term Breslow coined).

Cyclooctatetraene Dianion

 $4n+2 = 10 \pi$ electrons

Heterocyclic Aromatic Compounds

Heterocyclic Aromatic Compounds

Heterocyclic Aromatic Compounds and Hückel's Rule

6 π electrons in ring
lone pair on nitrogen is in an sp² hybridized orbital;
not part of π system of ring

Hückel and Pyridine

lone pair on nitrogen must be part of ring π system if ring is to have 6 π electrons lone pair <u>must be in</u> a *p* orbital in order to overlap with ring π system

Hückel and Pyrrole

two lone pairs on oxygen one pair is in a *p* orbital and is part of ring π system; other is in an *sp*² hybridized orbital and is not part of ring π system

Huckel and Furan

